熔盐堆

/ 化学 / 0 条评论 / 70浏览

熔盐堆(英语:molten salt reactor, MSR)是核裂变反应堆的一种,属于第四代反应堆,其主冷却剂以至燃料本身都是熔盐混合物,它可以在高温下工作(可获得更高的热效率)时保持低蒸气压,从而降低机械应力,提高安全性,并且比熔融钠冷却剂活性低。[1] 对第四代反应堆设计的更多研究开始重新引起人们对该技术的兴趣,多个国家都有项目,截至2021年9月,中国即将启动其液态燃料钍基熔盐实验堆(TMSR-LF1)[2][3]。

核燃料既可以是固体燃料棒,也可以溶于主冷却剂中,从而无需制造燃料棒,简化反应堆结构,使燃耗均匀化,并允许在线燃料后处理。在许多设计方案中核燃料,如 四氟化铀(UF4),溶于熔融的氟化物盐。炉芯用石墨做慢化剂,熔盐流体在其中达到临界。许多现代设计方案采用陶瓷燃料在石墨基质中均匀分布,熔盐提供低压高温冷却的形式。熔盐更有效地将热量带出炉芯,减少对泵、管道的需求,并因此而的缩小炉芯的尺寸。

在20世纪50年代这是新构想然而后续种种时代原因被美苏两国放弃,其他国家又缺乏预算和技术研发,导致停顿,但随着新材料工程的出现与时代要求变迁,这一技术重新受到了关注。[4] 美国早期的“飞行器反应堆试验(1954)”的主要动因在于熔盐反应堆尺寸小,而“熔盐反应堆试验(1965-69)”是钍燃料循环增殖反应堆核电站的样机,但最后都没有再持续发展。

目录 1 历史 1.1 1950年代 1.1.1 飞行器反应堆试验 1.2 1960-70年代 1.2.1 熔盐堆试验 1.3 21世纪 2 最近的进展 2.1 液态盐甚高温反应堆 2.2 液氟钍反应堆 3 参见 4 参考文献 5 延伸阅读 6 外部链接 历史 1950年代 飞行器反应堆试验 主条目:飞行器反应堆试验

橡树岭国家实验室的飞行器反应堆试验楼,后来它为熔盐堆试验而改建。 对熔盐堆的集中研究始于美国飞行器反应堆试验(US Aircraft Reactor Experiment, ARE)。ARE是一个热功功率2.5 MWth的核反应堆试验,旨在使核反应堆达到可作为核动力轰炸机引擎的高功率密度。该计划促成了几个试验,其中的三个引擎测试实验统称为热转移反应堆实验:国家反应堆试验站(现在的爱达荷国家实验室)的HTRE-1,HTRE-2和HTRE-3。其中一个实验用熔融氟化物盐NaF-ZrF4-UF4(53-41-6 mol%)作为燃料,用氧化铍(BeO)作为慢化剂,用液态钠作为第二级冷却剂,峰值温度为摄氏860 °C。它在1954年以100 MW-小时连续运行了超过九天。本实验的金属结构和管道采用了铬镍铁600合金。[5]

1960-70年代 熔盐堆试验 主条目:熔盐堆试验

MSRE设备图示 在20世纪60年代,橡树岭国家实验室(Oak Ridge National Laboratory, ORNL)在熔盐堆研究中居于领先,他们的大部分工作随着熔盐堆试验(Molten-Salt Reactor Experiment, MSRE)达到顶峰。MSRE是一个热功功率7.4 MWth的试验堆,用以模拟固有安全超热钍增殖堆的中子“核”。它测试了铀和钚的熔盐燃料。被测试的235UF4液态燃料有着将废物减至最少的独特衰变路径,废物同位素的半衰期在50年以下。反应堆摄氏650度的炽热温度可以驱动高效热机——例如燃气轮机。为了便于中子测量,庞大而昂贵的钍盐增殖层被略去。

MSRE位于ORNL。MSRE管道、堆芯包壳和结构组件由哈斯特洛合金-N制造,其慢化剂是热解石墨。MSRE于1965年达到临界,运行了四年。MSRE的燃料是LiF-BeF2-ZrF4-UF4(65-30-5-0.1),石墨堆芯慢化,第二级冷却剂是FLiBe(2LiF-BeF2)。MSRE温度达到摄氏650 °C,运行时间相当于满功率运行1.5年。

21世纪 由于核聚变发电和其他核电计划的持续延迟、以及对于产生最小温室气体 (GHG) 排放的能源的需求增加,在千禧年时对熔盐堆又重新恢复了兴趣[6][7] 。

最近的进展 液态盐甚高温反应堆 主条目:甚高温反应堆 截至2010年9月,利用熔融盐作为冷却剂的反应堆方面的研究一直在持续。传统熔盐堆和甚高温反应堆(Very High Temperature Reactor, VHTR)都被视作可能的设计方案纳入到第四代反应堆初步研究(GEN-IV)框架下。当前正在被研究的VHTR版本之一是液态盐甚高温反应堆(Liquid Salt Very High Temperature Reactor, LS-VHTR),一般也被称为先进高温堆(Advance High Temperature Reactor, AHTR)。[来源请求] 本质上,它是主回路不采用氦回路,而采用液态盐作为冷却剂的标准VHTR设计方案。它依赖于分布在石墨中的“TRISO”燃料。早期,AHTR关于石墨的研究集中在六角形石墨慢化块的插入石墨棒的形式,但如今的研究主要集中在鹅卵石式的燃料形式。[来源请求] LS-VHTR有许多吸引人的特性,包括:在甚高温度下工作的能力(大部分LS-VHTR所考虑的熔融盐的沸点都在1400 °C以上),低压冷却更容易匹配氢气生产厂条件(多数热化学循环要求温度超过750 °C),比相似工作条件下的氦冷VHTR有更好的电能转换效率,属于被动安全系统,以及意外事故中更好的裂变产物保持能力。[8]

液氟钍反应堆 富士反应堆为一种迷你熔盐堆是电功功率100MWe的熔盐燃料钍燃料循环热增殖堆,采用与橡树岭国家实验室反应堆相类似的技术。它由日本、美国和俄罗斯联合开发。作为一个增殖堆,它将钍转换为核燃料。作为热谱反应堆,它的中子调节是固有安全的。与所有熔盐堆一样,它的堆芯是化学惰性的,工作在低压条件下,这可以防止爆炸和有毒物释放。一个全尺寸反应堆有望在20年内被开发出来,[9] 但该项目似乎缺少资金支持。[10]

参见 核技术主题 icon 能源主题 icon 物理主题 水均匀反应堆 第四代反应堆 一体化快堆 液态氟化钍反应堆 液态金属冷却反应堆 核动力飞机 核动力 钍燃料循环