长寿命裂变产物

/ 化学 / 0 条评论 / 70浏览

长寿命裂变产物一般指由核裂变反应产生的、半衰期超过20万年的放射性物质。[1]这并非精确的科学定义,比如有人把某些半衰期在20年至100年间的裂变产物也称作长寿命裂变产物。[2]另外的人则主张把这些半衰期在20年-100年间的裂变产物称作中等寿命裂变产物。[3]

目录 1 核废料放射性的来源 1.1 短寿命裂变产物 1.2 中等寿命裂变产物 1.3 锕系元素 1.4 长寿命裂变产物 2 七种长寿裂变产物的放射性随时间的变化 3 参考资料 核废料放射性的来源 核废料中含有裂变产物,还含有锕系元素,以及中子活化后的放射性元素(又称为激活产物)。[1]

短寿命裂变产物 中等寿命裂变产物 项: 单位: t½ a 产额 % Q* KeV βγ * 155Eu 4.76 .0803 252 βγ 85Kr 10.76 .2180 687 βγ 113mCd 14.1 .0008 316 β 90Sr 28.9 4.505 2826 β 137Cs 30.23 6.337 1176 βγ 121mSn 43.9 .00005 390 βγ 151Sm 90 .5314 77 β 刚出堆的乏燃料在短期内具有极强的放射性,这种放射性大多来源于裂变产物中的短寿命裂变产物,比如碘-131(半衰期=8.0197天)和钡-140(半衰期=12.7523天)。四个月之后,上述两种核素的强放射性基本消失,取而代之的是铈-141、锆-95、铌-95和锶-89。两到三年之后,放射性主要来源于铈-144、镨-144、钌-106、铑-106和钷-147。[1]

当反应堆或者乏燃料发生核泄漏时,只会有部分核素外泄。这种泄漏的同位素特征和大气层核爆炸完全不同。[4]

中等寿命裂变产物 乏燃料经过几年的冷却之后,大部分放射性源自铯-137和锶-90。二者在裂变反应中的产额大概都是6%,半衰期都在30年左右。其他半衰期在30年左右的核素要么反应产额低,要么在反应堆中经中子俘获而被转变成其他核素(比如钐-151、铕-155和镉-113m),因此对乏燃料的放射性贡献不大。在几年到几百年的时间里,乏燃料的放射性基本可以认为就是铯-137和锶-90的放射性,可以通过二者指数衰变的叠加来模拟。它们被称为中等寿命裂变产物。[1][3]

氪-85(半衰期=10.76年)也算是中等寿命裂变产物。但它的情形和铯-137和锶-90有所不同。氪-85是一种惰性气体,不会在大气圈、岩石圈或者水圈富集。因此在现有再处理流程中,氪-85可以直接排放到大气中。[5]在美国和其他一些国家,乏燃料在再处理之前一般要经过几十年的冷却。到了再处理的时候,大部分氪-85已经经衰变而消失。

锕系元素 锕系元素和裂变产物的半衰期查论编 锕系 半衰期 范围(年) 裂变产物 244Cm 241Pu f 250Cf 243Cmf 10~30 y 137Cs 90Sr 85Kr 232U f 238Pu f代表 “裂变” 69~90 y 151Sm nc➔ 4n 249Cf f 242Amf 141~351 y 没有半衰期为 102年至2×105年 的裂变产物 241Am 251Cf f 431–898 y 240Pu 229Th 246Cm 243Am 5~7 Ky 4n 245Cmf 250Cm 239Pu f 8~24 Ky 233U f 230Th 231Pa 32~160 Ky 4n+1 234U 4n+3 211~290 Ky 99Tc 126Sn 79Se 248Cm 242Pu 340~373 Ky 长寿命裂变产物 237Np 4n+2 1~2 My 93Zr 135Cs nc➔ 236U 4n+1 247Cmf 6~23 My 107Pd 129I 244Pu 8 My >7% >5% >1% >.1% 232Th 238U 235U f 0.7~12 By 裂变产物产额 当铯-137和锶-90大部分衰变后,乏燃料的放射性主要来源于锕系元素,最重要的有钚-239、钚-240、镅-241、镅-243、锔-245和锔-246。[1]这些元素可以经再处理回收,用作裂变燃料。分离这些元素后,在1,000-100,000年左右乏燃料的放射性会大大降低。钚-239可以直接用于现有的热中子反应堆。量比较小的镅-241和钚-242则可以在快中子反应堆中转化成其他核素。

长寿命裂变产物 100,000年以后,裂变产物将以七种核素为主,兼有少量镎-237和钚-242。[1]这七种核素的半衰期在20万年到1600万年之间。主要产物锝-99、锆-93和铯-135的产额在6%左右,其衰变能在100-300千电子伏特之间,一部分表现为β辐射,另一部分则以无害的中微子形式释放。锕系元素以α衰变为主,衰变能在4-5兆电子伏特。

锝-99是长寿裂变产物中产额较高的,为6%左右。它释放出低到中等能量的电子,没有γ辐射。因此只要不摄入体内,对生物不构成太大的风险。但锝可以被氧化为高锝酸盐(TcO4-),溶解度好,被广泛用于核医学。[6][7]锝-99在环境中迁移性比较大。据说已有数以吨计的锝-99因人类活动进入环境。[8] 锡-126衰变能较大,而且是七种长寿裂变产物中唯一能释放高能γ射线的核素。但是这种核素产额很低。如果反应堆以铀-235为燃料,在乏燃料中,每单位时间锡-126释放出的能量是锝-99的5%;如果反应堆以铀-235(65%)和钚-239(35%)为燃料,在乏燃料中,每单位时间锡-126释放出的能量是锝-99的20%。锡化学性质比较惰性,不易在环境中迁移,因此对人类健康影响不大。 硒-79的产额很低,辐射也很弱。每单位时间硒-79释放出的能量是锝-99的0.2%。 锆-93的产额在6%左右,其衰变比锝-99慢7.5倍,衰变能只是锝-99的30%。因此起始时乏燃料中的锆-93释放的能量只是锝-99的4%。但其能量贡献会随着时间而增加。锆-93产生极弱的γ辐射,在环境中也相对惰性。 铯-135的前体氙-135产额在6%左右,但吸收热中子的能力很强。因此大部分氙-135嬗变为稳定同位素氙-136,只有少部分衰变为铯-135。假定90%的氙-135发生嬗变,起始时乏燃料中的铯-135释放的能量只是锝-99的1%。铯-135是七种长寿裂变产物中唯一一种碱金属,具有强电正性。相比之下,主要的中等寿命裂变产物和除镎之外的锕系元素都是碱性。铯-135具有挥发性,可以用高温挥发的办法分离。[9] 长寿命裂变产物 项: 单位: t½ Ma 产额 % Q* KeV βγ * 99Tc 0.211 6.1385 294 β 126Sn 0.230 0.1084 4050 βγ 79Se 0.295 0.0447 151 β 93Zr 1.53 5.4575 91 βγ 135Cs 2.3 6.9110 269 β 107Pd 6.5 1.2499 33 β 129I 15.7 0.8410 194 βγ 钯-107的半衰期很长,产额在1%左右。如果以钚-239为燃料,钯-107的产率比用铀-235为燃料时要高。其放射性很弱。起始时乏燃料中的锆-93释放的能量只是锝-99的万分之一。钯属贵金属,化学性质不活泼。 碘-129半衰期在七种长寿裂变产物中最长:1570万年。它放射性也很弱,起始时乏燃料中的锆-93释放的能量只是锝-99的1%。但放射性碘却对生物构成重大的核威胁,因为碘是许多生物必须的微量元素之一。碘-131在碘同位素中放射性最强,危害也最大。 七种长寿裂变产物的放射性随时间的变化 如果反应堆以铀-235为燃料,在乏燃料中,每单位时间其它六种核素释放出的縂能量是锝-99的10%;如果反应堆以铀-235(65%)和钚-239(35%)为燃料,在乏燃料中,每单位时间其它六种核素释放出的縂能量是锝-99的25%。

乏燃料冷却1000年后,中等寿命裂变产物铯-137和锶-90的放射性降低到和长寿裂变产物持平的水平。如果锕系元素没有分离的话,将比中等寿命裂变产物和长寿裂变产物的放射性更强。

乏燃料冷却100万年后,锝-99的放射性将首次低于锆-93。300万年后,锆-93的衰变能将低于碘-129。

因为锝-99和碘-129对生物危害较大,但同时有较大的中子反应截面,有人正在考虑用核嬗变的方式将它们转化为危害较小的核素以除去。[10]