归并排序

/ 比较排序 / 0 条评论 / 70浏览

归并排序(英语:Merge sort,或mergesort),是创建在归并操作上的一种有效的排序算法,效率为 � ( � log ⁡ � ) {\displaystyle O(n\log n)}(大O符号)。1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。

目录 1 概述 2 归并操作 2.1 递归法(Top-down) 2.2 迭代法(Bottom-up) 3 实现示例 3.1 C语言 3.2 C++ 3.3 C# 3.4 Ruby 3.5 Java 3.6 PHP 3.7 Python3 3.8 Erlang 3.9 Javascript 3.10 Go 4 算法复杂度 5 参考文献 6 外部链接 概述 采用分治法:

分割:递归地把当前序列平均分割成两半。 集成:在保持元素顺序的同时将上一步得到的子序列集成到一起(归并)。 归并操作 归并操作(merge),也叫归并算法,指的是将两个已经排序的序列合并成一个序列的操作。归并排序算法依赖归并操作。

递归法(Top-down) 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列 设定两个指针,最初位置分别为两个已经排序序列的起始位置 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置 重复步骤3直到某一指针到达序列尾 将另一序列剩下的所有元素直接复制到合并序列尾 迭代法(Bottom-up) 原理如下(假设序列共有 � n个元素):

将序列每相邻两个数字进行归并操作,形成 � � � � ( � / 2 ) {\displaystyle ceil(n/2)}个序列,排序后每个序列包含两/一个元素 若此时序列数不是1个则将上述序列再次归并,形成 � � � � ( � / 4 ) {\displaystyle ceil(n/4)}个序列,每个序列包含四/三个元素 重复步骤2,直到所有元素排序完毕,即序列数为1 实现示例 C语言 迭代版:

int min(int x, int y) { return x < y ? x : y; } void merge_sort(int arr[], int len) { int *a = arr; int *b = (int *) malloc(len * sizeof(int)); int seg, start; for (seg = 1; seg < len; seg += seg) { for (start = 0; start < len; start += seg * 2) { int low = start, mid = min(start + seg, len), high = min(start + seg * 2, len); int k = low; int start1 = low, end1 = mid; int start2 = mid, end2 = high; while (start1 < end1 && start2 < end2) b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++]; while (start1 < end1) b[k++] = a[start1++]; while (start2 < end2) b[k++] = a[start2++]; } int *temp = a; a = b; b = temp; } if (a != arr) { int i; for (i = 0; i < len; i++) b[i] = a[i]; b = a; } free(b); } 递归版:

// 分治-治 void mergeSort_conquer(int* array, int left, int mid, int right, int* temp) { // [left, mid]和[mid+1, right]两个有序数组 int i = left; int j = mid + 1; int index = 0; while (i <= mid && j <= right) { if (array[i] < array[j]) { temp[index++] = array[i++]; } else { temp[index++] = array[j++]; } } // 剩余元素直接放入temp while (i <= mid) { temp[index++] = array[i++]; } while (j <= right) { temp[index++] = array[j++]; } // 放回原数组 index = 0; while (left <= right) { array[left++] = temp[index++]; } }

// 分治-分 void mergeSort_divide(int* array, int left, int right, int* temp) { if (left < right) { int mid = left + (right - left) / 2; // 左边归并排序 mergeSort_divide(array, left, mid, temp); // 右边归并排序 mergeSort_divide(array, mid + 1, right, temp); // 合并两个有序序列 mergeSort_conquer(array, left, mid, right, temp); } }

void mergeSort(int* array, int size) { int* temp = (int*)malloc(sizeof(int) * size); mergeSort_divide(array, 0, size - 1, temp); } C++ 迭代版:

template // 整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)的運算子功能 void merge_sort(T arr[], int len) { T *a = arr; T *b = new T[len]; for (int seg = 1; seg < len; seg += seg) { for (int start = 0; start < len; start += seg + seg) { int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len); int k = low; int start1 = low, end1 = mid; int start2 = mid, end2 = high; while (start1 < end1 && start2 < end2) b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++]; while (start1 < end1) b[k++] = a[start1++]; while (start2 < end2) b[k++] = a[start2++]; } T *temp = a; a = b; b = temp; } if (a != arr) { for (int i = 0; i < len; i++) b[i] = a[i]; b = a; } delete[] b; } 递归版:

void Merge(vector &Array, int front, int mid, int end) { // preconditions: // Array[front...mid] is sorted // Array[mid+1 ... end] is sorted // Copy Array[front ... mid] to LeftSubArray // Copy Array[mid+1 ... end] to RightSubArray vector LeftSubArray(Array.begin() + front, Array.begin() + mid + 1); vector RightSubArray(Array.begin() + mid + 1, Array.begin() + end + 1); int idxLeft = 0, idxRight = 0; LeftSubArray.insert(LeftSubArray.end(), numeric_limits::max()); RightSubArray.insert(RightSubArray.end(), numeric_limits::max()); // Pick min of LeftSubArray[idxLeft] and RightSubArray[idxRight], and put into Array[i] for (int i = front; i <= end; i++) { if (LeftSubArray[idxLeft] < RightSubArray[idxRight]) { Array[i] = LeftSubArray[idxLeft]; idxLeft++; } else { Array[i] = RightSubArray[idxRight]; idxRight++; } } }

void MergeSort(vector &Array, int front, int end) { if (front >= end) return; int mid = front + (end - front) / 2; MergeSort(Array, front, mid); MergeSort(Array, mid + 1, end); Merge(Array, front, mid, end); } [1]

C# public static List sort(List lst) { if (lst.Count <= 1) return lst; int mid = lst.Count / 2; List left = new List(); // 定义左侧List List right = new List(); // 定义右侧List // 以下兩個循環把 lst 分為左右兩個 List for (int i = 0; i < mid; i++) left.Add(lst[i]); for (int j = mid; j < lst.Count; j++) right.Add(lst[j]); left = sort(left); right = sort(right); return merge(left, right); } ///

/// 合併兩個已經排好序的List /// /// 左側List /// 右側List /// static List merge(List left, List right) { List temp = new List(); while (left.Count > 0 && right.Count > 0) { if (left[0] <= right[0]) { temp.Add(left[0]); left.RemoveAt(0); } else { temp.Add(right[0]); right.RemoveAt(0); } } if (left.Count > 0) { for (int i = 0; i < left.Count; i++) temp.Add(left[i]); } if (right.Count > 0) { for (int i = 0; i < right.Count; i++) temp.Add(right[i]); } return temp; } Ruby def merge list return list if list.size < 2

pivot = list.size / 2

Merge

lambda { |left, right| final = [] until left.empty? or right.empty? final << if left.first < right.first; left.shift else right.shift end end final + left + right }.call merge(list[0...pivot]), merge(list[pivot..-1]) end Java 递归版:

static void merge_sort_recursive(int[] arr, int[] result, int start, int end) { if (start >= end) return; int len = end - start, mid = (len >> 1) + start; int start1 = start, end1 = mid; int start2 = mid + 1, end2 = end; merge_sort_recursive(arr, result, start1, end1); merge_sort_recursive(arr, result, start2, end2); int k = start; while (start1 <= end1 && start2 <= end2) result[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++]; while (start1 <= end1) result[k++] = arr[start1++]; while (start2 <= end2) result[k++] = arr[start2++]; for (k = start; k <= end; k++) arr[k] = result[k]; } public static void merge_sort(int[] arr) { int len = arr.length; int[] result = new int[len]; merge_sort_recursive(arr, result, 0, len - 1); } 迭代版:

public static void merge_sort(int[] arr) { int[] orderedArr = new int[arr.length]; for (int i = 2; i < arr.length * 2; i *= 2) { for (int j = 0; j < (arr.length + i - 1) / i; j++) { int left = i * j; int mid = left + i / 2 >= arr.length ? (arr.length - 1) : (left + i / 2); int right = i * (j + 1) - 1 >= arr.length ? (arr.length - 1) : (i * (j + 1) - 1); int start = left, l = left, m = mid; while (l < mid && m <= right) { if (arr[l] < arr[m]) { orderedArr[start++] = arr[l++]; } else { orderedArr[start++] = arr[m++]; } } while (l < mid) orderedArr[start++] = arr[l++]; while (m <= right) orderedArr[start++] = arr[m++]; System.arraycopy(orderedArr, left, arr, left, right - left + 1); } } } PHP function merge_sort($arr) { $len = count($arr); if ($len <= 1) return $arr; $half = ($len>>1) + ($len & 1); $arr2d = array_chunk($arr, $half); $left = merge_sort($arr2d[0]); $right = merge_sort($arr2d[1]); while (count($left) && count($right)) if ($left[0] < $right[0]) $reg[] = array_shift($left); else $reg[] = array_shift($right); return array_merge($reg, $left, $right); }

$arr = array(21, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70); $arr = merge_sort($arr); for ($i = 0; $i < count($arr); $i++) { echo $arr[$i] . ' '; } Python3 def mergeSort(nums): if len(nums) < 2: return nums mid = len(nums) // 2 left = mergeSort(nums[:mid]) right = mergeSort(nums[mid:])

i = j = 0
result = []
while i < len(left) and j < len(right):
    if left[i] < right[j]: 
        result.append(left[i])
        i += 1
    else: 
        result.append(right[j])
        j += 1

while i < len(left): 
    result.append(left[i]) 
    i += 1

while j < len(right): 
    result.append(right[j]) 
    j += 1

return result

if name == "main": nums = [1, 4, 2, 3.6, -1, 0, 25, -34, 8, 9, 1, 0] print("original:", nums) print("Sorted:", mergeSort(nums)) Erlang %% @doc 归并排序 g_sort([]) -> []; g_sort([T]) -> [T]; g_sort(L) -> g_sort(L, length(L)).

g_sort([_, _ | _] = L, Length) -> SplitNum = trunc(Length / 2), {L1, L2} = lists:split(SplitNum, L), g_merge(g_sort(L1, SplitNum), g_sort(L2, Length - SplitNum)); g_sort(L, _Length) -> L.

%% 已经排好序的两个list合并 g_merge([], L2) -> L2; g_merge(L1, []) -> L1; g_merge([T1 | Rest1] = L1, [T2 | Rest2] = L2) -> if T1 =< T2 -> [T1 | g_merge(Rest1, L2)]; true -> [T2 | g_merge(L1, Rest2)] end. Javascript 递归法

function merge(left, right){ var result = []; while(left.length > 0 && right.length > 0){ if(left[0] < right[0]){ result.push(left.shift()); }else{ result.push(right.shift()); } } return result.concat(left, right); }

function mergeSort(arr){ if(arr.length <=1) return arr; var middle = Math.floor(arr.length / 2); var left = arr.slice(0, middle); var right = arr.slice(middle); return merge(mergeSort(left), mergeSort(right)); } 迭代法

Go package main

import ( "fmt" "sort" )

func MergeSort(list []int) []int { var length = len(list) if length < 2 { return list } var mid = length / 2 return merge(MergeSort(list[:mid]), MergeSort(list[mid:])) }

func merge(x, y []int) []int { var r []int = make([]int, len(x)+len(y)) for i, j := 0, 0; ; { if i < len(x) && (j == len(y) || x[i] < y[j]) { r[i+j] = x[i] i++ } else if j < len(y) { r[i+j] = y[j] j++ } else { break } } return r }

func main() { var list []int = []int{56, 48, 58, 94, 87, 4, 5, 61, 5, 8, 74, 9, 84, 15, 94, 9, 4, 31, 41, 68, 7, 4, 6, 94, 16, 9, 8, 4} fmt.Println(MergeSort(list)) fmt.Println(list)

sort.Ints(list)
fmt.Println(list)

} 递归版

package main

import ( "fmt" )

func merge(data []int) []int { sum := len(data) if sum <= 1 { return data } left := data[0 : sum/2] lSize := len(left) if lSize >= 2 { left = merge(left) } right := data[sum/2:] rSize := len(right) if rSize >= 2 { right = merge(right) } j := 0 t := 0 arr := make([]int, sum) fmt.Println(left, right, data) for i := 0; i < sum; i++ { if j < lSize && t < rSize { if left[j] <= right[t] { arr[i] = left[j] j++ } else { arr[i] = right[t] t++ } } else if j >= lSize{ arr[i] = right[t] t++ } else if t >= rSize{ arr[i] = left[j] j++ } } return arr }

func main() { var aa = []int{1000, 2, 31, 34, 5, 9, 7, 4, 6, 89, 90, 99, 99, 99, 99, 99}

var bb = merge(aa)
fmt.Println(bb)

} 算法复杂度 比较操作的次数介于 ( � log ⁡ � ) / 2 {\displaystyle (n\log n)/2}和 � log ⁡ � − � + 1 {\displaystyle n\log n-n+1}。 赋值操作的次数是 ( 2 � log ⁡ � ) {\displaystyle (2n\log n)}。归并算法的空间复杂度为: Θ ( � ) {\displaystyle \Theta (n)}