深度优先搜索算法(英语:Depth-First-Search,DFS)是一种用于遍历或搜索树或图的算法。这个算法会尽可能深地搜索树的分支。当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。[1](p. 603)这种算法不会根据图的结构等信息调整执行策略[来源请求]。
深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的拓扑排序表[1](p. 612),利用拓扑排序表可以方便的解决很多相关的图论问题,如无权最长路径问题等等。
因发明“深度优先搜索算法”,约翰·霍普克洛夫特与罗伯特·塔扬在1986年共同获得计算机领域的最高奖:图灵奖。[2]
目录 1 演算方法 2 C++的实现 3 参考文献 4 参见 演算方法 首先将根节点放入stack中。 从stack中取出第一个节点,并检验它是否为目标。 如果找到目标,则结束搜寻并回传结果。 否则将它某一个尚未检验过的直接子节点加入stack中。 重复步骤2。 如果不存在未检测过的直接子节点。 将上一级节点加入stack中。 重复步骤2。 重复步骤4。 若stack为空,表示整张图都检查过了——亦即图中没有欲搜寻的目标。结束搜寻并回传“找不到目标”。 C++的实现 定义一个结构体来表达一个二叉树的节点的结构:
struct Node { int self; // 数据 Node *left; // 左孩子 Node *right; // 右孩子 }; 那么我们在搜索一个树的时候,从一个节点开始,能首先获取的是它的两个子节点。例如:
“ A B C D E F G
” A是第一个访问的,然后顺序是B和D、然后是E。然后再是C、F、G。那么我们怎么来保证这个顺序呢?
这里就应该用堆栈的结构,因为堆栈是一个后进先出(LIFO)的顺序。通过使用C++的STL,下面的程序能帮助理解:
const int TREE_SIZE = 9; std::stack<Node *> unvisited; Node nodes[TREE_SIZE]; Node *current;
//初始化树 for (int i = 0; i < TREE_SIZE; i++) { nodes[i].self = i; int child = i * 2 + 1; if (child < TREE_SIZE) // Left child nodes[i].left = &nodes[child]; else nodes[i].left = NULL; child++; if (child < TREE_SIZE) // Right child nodes[i].right = &nodes[child]; else nodes[i].right = NULL; }
unvisited.push(&nodes[0]); //先把0放入UNVISITED stack
// 树的深度优先搜索在二叉树的特例下,就是二叉树的先序遍历操作(这里是使用循环实现) // 只有UNVISITED不空 while (!unvisited.empty()) { current = (unvisited.top()); //当前访问的 unvisited.pop(); if (current->right != NULL) unvisited.push(current->right ); if (current->left != NULL) unvisited.push(current->left); cout << current->self << endl; } 参考文献
本站文章除注明转载/出处外,均为本站原创或翻译,转载前请务必署名,转载请标明出处
最后编辑时间为: